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Lecture 6

CELLULAR FLAMES

We shall now examine the left stability boundary that was uncovered
in lecturs S in our discussion of VEFs (figure 5.3). The boundary is
associated with instabilities leading to cellular flames, i.e. flames
whose surfaces are broken up into distinet luminous regions (cells) separated ]
by dark lines. Each line is a ridze of high curvature, convex towards the
ournt gas. For a nominally flat flame these cells are very unsteady,
growing and subdividing in a chaotic fashionj; but curvature, for example,
can make them stationary.

Tne most striking manifestation of cellular instability is the

zolyhedral flame, into which the conical flame on a Bunsen burner can
suddanly transform. The conical surface splits into triangular cells
forming a polyhedron; for a five-sided flame the appearance, from above,
is much like that of the Chrysler emblem (figure 1). The dark wedges
Tetwzan tha yhite triangular cells corresrvond to sherp ridges; the dark
centrzl region corresponds to a tip with strong curvature. Figure 2 gives
a sksteh of a five-sided flame, derived from a photograph in Smith &
Pickering (1929). Polyhedral flames are often stationary, but can spin
repidly about the vertical, making several revolutions per second.

We shall discuss chaotic and stationary celluler flames, including
$olrnedral flames, in the framework of the weakly-nonlinear theory
pion2ered by Sivasiinsky. The constant-density approximation will be

1523 throughout, azl“hough perturbations of it will be admitted in two

1. Chzotic Cellular Structure.

The nonlinearity associated with the left stability boundary will

Tiey

te wezxest in the neighborhood of

-6.1-
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L =-1, k=0,

e possidle difurcation point; accordinzly we focus our attention there by

tzXking
2 +1=o0(e), k=o(/e),a=o(e2), (2)

whare € 1is a small positive parameter that will be found to represent the
=plitude of the disturbance. The relative ordering of 2+l and k is
sugzested by the parabolic shape of the stability boundary, while the order
o7 a follows from the limiting form (5.49) of the dispersion relation
5.39) as € > 0. This determines the growth rate of the most important
Fourier components (the unstable ones) of the disturbance when E}l

is sma2ll. In terms of any scalar F that reoresents the disturbance field,

tre disversion relation is equivalent to

F 4r -(1+2)F__ = 0.
et y_yyy(+)yy (3)

or 241 < 0, this ecuation predicts unbounded growth. Bifurcation

description) is possible if nonlinear effects, not
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2% taxen into zcecount, limit this growth. We shall first give a heuristic
zrgument to determine these effects and then substantiate the result by
srmal analysis. The arzument consists in recognizing that equation (3)

is 2ctuzlly =2 formulsz for the wave speed, and modifying it appropriately.

In this connection, zuppose that F  determines the location of the flame

X = -t + ¢eF;
“ren th2 sp22i 27 the sheat is
W= l4sW +... with W, = -F
1 1l t’
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and equetion (3) becomes
W, = LF - (1+)F . 6
( )ryy (6)

Tnis formula. determines the deviations of the flame speed from its adiabatic
valuz of 1 due to the reaction-diffusion effects that are trigéered by the
distortion of the flame front.

Now, equation (5b) is mere kinematics, valid in a2 linear theory only.

The exact relation between flame speed and displacement is

1-eF
W = ____t_ = l-¢F —3£2F§+... (7)

¢1+52F§ ‘

and, for disturbances with wave-numbers of the magnitude {(2v), the nonlinear
2.2

-
1)

-

eraos €

is compareble to the linear term sFt. This sugzgests that the

nonlinear generalization

- 12
W o= -Ft 2er (8)

should be used in the formula (6) and, when € is rurged from:the result-

ing =squation by writing

- 2

241 = ~e, n = Yey, T = €t (9)
(in accordance with the ordering (2)), we find

+ hrnﬂnn + Tan = 0. (10)

"3
+
-
o]
3N

iote that this equation hold for 2 < -1.
Substantiation of this result reguires a systematic asymptotic

-

davelorment in whicnh x 1is replaced by the coordinate

n=x+1t-¢eFn,t)
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in the governing eguations (L4.24,25); thus,

3/

1
3/3x = 3/3n, 3/37 = -¢ 2Fna/an+s"‘a/an, 3/at = (1-:3Ft)8/3n+523/31 (12)

when y, © are replaced by n,r. The normal derivative, required for

the jump conditions (L.27-29), is

(l+§e3F:)3/an-e3Fna/an (1%)

to sufficient accuracy. Perturbation expansions in € are now introduced '
for T, h, and T, leading to a sequence of linear problems for the T- and h- !
coefficients as functions of n,n, and 1. These are to be solved under the
reg:irerents: Tl = T2 = T3 =,..2 0 for n > 0; conditions as n + -» are

ndisturbed; and exponentizl grcwth as n - 4o is disallowed. The problems
5 X

are overdetermined, but only at the fourth (for T ) is a solvability

h)

h
3’3
- condition reguirsd, namely equation (10) for the leading term in F.

Tfor two-dimsnsional disturbances of the flame sheet, the basic equation

F + ;(VF)2+ uvhp + V2F = 0. (1k)

Discussion for toth one- and two-dimensional disturbances has been limited
4o numerical comrutations. The solutions obtained display chaotic variations
in 2 cellular siructure, resembling the behavior of actual flames. TFigure 3

clearly shows the ridges that separate the individual cells.

Zguation {(17) is a balance of small terms; it may be modified to account
Tor any additionzl thysiczl process whose effect is also small. Hydrodynamic
27%224s5 can te Incorporated, for example, if the density change across the
Sizma is eprrozriately small (because of small heat release), and this
svides imporiznt insight into the role of Darrieus-Landau instability

f1amas. Equation (10 ) is replaced by
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=TT 375 (15)
2«53/2

heat release beinz v = 0(1): the exvansion ratio
3/2)

1 oy 0(e Numerical integration shows that the

destabilizing; an even finer structure is super-

cellular patterr obtained without it. We shall

Ky

further, since Sivashins (1983) has recently

Instead, we shall examine a much simpler effect,

urce of mixture supporting a stationary cylindrical

d of the efflux is taken to be

(16)

able The corresponding solution of equations

2 7

nditions (4.27-29), and the bouniary conditions at

r R and thsat

1

Y rn(r/r) /2 (17)

f

is 1 at the flare location, an unexpected result.
flame curvature on its speed, normally significant,
effsct of flow divergence.

2 - .
0(e”), as for the disturbed

the curvature is

equation (10)}. We would therefore expect such

1]

d to the same extent, to be described by a modifi-
n; the additional terms will ve due to flow divergence

The modified =2quation can be derived by formal
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expansion, as was the original; but such an exercise, although reassuring,
is hardly illwzinating. We shall instead give a heuristic derivation that
erphasizss the dhysics.

Tna general effect of large-scale (and therefore weak) stretch on flame

speed was identified in section L.5; we may write
W=l -(l+2)K+..., (18)

where ¥ is the Xarlovitz stretch (4.3). This effect is the origin of
the second term on the right side of esquation (6); the first, corresponding
to what is normslly a small correction to the result (18), must be retained
when ¢ is close to -1. 1In the present context, where flow divergence

-1 2

generates a stratch R of order e 1in the undisturbed plane flame,

equation (6) nas to te replaced by

W, = LF + e +R . (19)

(ST

description is velid only up to 0O(e °) wvalues of ¥

s

:ineratic exgression (8) for the wave speed is also modified,

4
o

-

because the Tlaze sheet is moving in 2 non-uniform velocity field. Ve

find
. - = - 2, .2 2
W, o= -7, ~y7 /3-F/R-y [eR"-3eF. (20)
M Y Y
+3 suffizient accuracy, 3o that combination with the result (19) now yields
£.2 i - - - 2, .2
T+ %:_ + L7 4+ e”  +T/R+yT /R =y /eRT - 1/R. (21)
< < 7 I s J
This has the stasionary solution
T =r, = —y2/2€R (22)

. _ - : : A pRET I
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-

corrasponding to the undisturbed circular flame, Replacing F by F+FO,
so that F now represents disturbance of the circular flame sheet, and
using thae scaled variables (9) yield

=22 - . 2

F o+ 2F 4 LF +F 4+ Y7 =0 with v = 1/eR. (23)

nnny nn

Comparison with eguation (10) shows that the only new term is yF.
The linearized form of eguation (23), with TF set proportional to
exp(at+iky), was considered in section 5.4%. Tigure 5.5 shows that curva-

turs is a stabilizing influence, but that instability occurs for
Yy <y =1/16, (24
corresponding to a supercritical bifurcation with wavenumber
k= /e/5. (25)
7> szow this we write

%/52 (26)

"
-
|
[oc]
-
]
i
[«23
L))
-
A
]

y

and expvand f 1is a power series in §. In the usual way, we find that the

leading term is of the fornm

_oiky . -iky
.= A(T)e ¢ +A(T)e ©, (27)

dn/ar = A-ZA2/36 (28)

Py

if tware is to be no secular term in the second perturbation of ., The
equasion describes tha evolution in (slow) time 1 Of the amplitude

“rom some initial value to the final value |A} = 6.
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An exarination of the first rerturvation of f reveals that the

crests ol t inal stationary solution, as viewed from the burnt gas,

ara sharrzer than the troughs. Moreover, the flame tenmperature is
3 Giminished at the crasts (as for the cellular flames discussed in section

.3), so that they are darker than the rest of the flame sheet. Sharp,

N

(]

dark crests are a universal feature of celiular flama2s as observed.

3 Tares

I
ot

ear a2 Stagnation Point. .

Equation (23) is only one of a class of evolution equations that
4 describe cellular flames in a variety of circumstances. An unusual

example corresponds to a flame located in weak stagnation-point flow

a(-x,y) with 3 = 0(c2). (29)

<
il

0 changes nave besn made in the notation of section k.5: the x,y-axes
nave baen rotatad, so that the wall is now x = 0 and the undisburbed
Tlame at x = x, > 0 (ef. figure 4.3), to conform with notat.on already
23%abplished in this lecture; and the strain rate is now B, since the e

useld thare has been conscripted as a sma2ll parameter here. As for the

The undisturped flame experiencesa stretch B8 so that, if it is
Zisplaced by an amcunt eF, its speed is
W. = LF  +eF + 38 (30)

-2 sufficient accuracy (cf. equation (19)). The kinematic expression for

orrassponding to the result (20), is

[¢]

tne wave speed,

= 2
b = {2+ 1) -r = -0 - T o hi < T,
" (5.9 1)/e Ty B }Ay BT 38X, . (31)

gives a formula for x,, namely




|
:
;
i

e —— - —————

2
x, = 1l/ley + e with y = 8/62, (32)

-
1
Iy

0
I
fu
o

evolution equaticn for

]
+
I8 )
[A¥]

FTo+ LF +F 4+ v = 0.
n nnnn nn Y('\ )n (33)

-l

Comzezriscn with equation (10) shows thst the only new term is y(nF)n.

]

ne generalization

i
?T + 5(3?)2 + 4yF 4 v2F + Y(nF)n =0 (3L)

acccounts for disturtances that vary in the z-direction also. If we now
consiler disturbances independent of n, this equation reduces to the
earlizar cne (23) with n replaced by r = Yez. Setting ¥ proportional

v

to excl{at+ikz) erd linearizlﬁg therefors leads to the disversion

rela<icn (5.49) and xence “2 fizure 5.5. The bifurcation analysis starting

with <as transformation (2€) is applicable, so that for values of vy

s1ighily smaller than 1/1% *hers will be a stationary structure charc-
terized by dark ridges pointing towards the burnt ges.

Thiz rthenomenon has aTrarently been known for many years. Tor upward
ororzsation througn sufficisntly lean hydrogen-alr mixtures in a standard

or ritbons, sevare=ei by darx lines (figure U); it seems probable that this

(9}
vy
ck

b
i

here.

i
£,

noninally plane flame consiljere

iiffarent yze oF disturbarce (which can be comtined with the previous

¥

novewver, adding to the discussion) corresponds to

c YT
T = . (r)exp(ikne ")

. (35)




Substitution into the lineszrized version of the evolutiorn equation (33)
gives

- Y -k
aa/dr = Alk2e YT ukte Ty, (36)

wnich has the solution

-2v1

A=aexpl(l-e x2/2y + (e-hYT—l)kh-Yr]. (37)

igure 5 shows that any disturbance eventually has a decreasing amplitude,
althougn for 2 time the amplitude increases if y 1is less than 1/16.

In the limit 1T =+ , ths solution (37) tends to zero. We conclude that
the flame is stable to this type of disturbance.

The chzo-ic cellular instability found experimentally for weak strain-

suggests that all disturbances should grow. Moreover, in the linit

)
4]

v =+ O the theorstical results in lecture 5 predict instability for all
{3m211) wevanurbers. Thess Tzcts are at variance with +the conclusion ’

a-2ve, which prompted Sivashinsky, Law & Joulin (1982) to provide the

If +he nonlinear terr is retained in equation (33), harmonics ere

continually generatel and these may grow during part of their lifetime,
ororiding a mechanisxz for sustzining the overall growth of the distur-

-, umerical computations confirm this notion and

iszests thaet the nesessary values of y are significantly smaller than
3 K
1/17. There mar e imzlizaticns for the hydrogen flame of Tigure 4. Away

t2 57 strzin will be diminished, and may be small

permit instabilities in the direciion of the flow.
=23 i3, she ritoon instsbility mey become a cellular instability. Inter-

Tinzly encish, the 43ils of the ribbons are often seen to break up into

o9 a3 '
Slama (Pizare 4).

- T e SRR DR
. T ,
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rnadral Flames.

In the 90 years since Smithells first observed thesz flames, they have
bacome established as a familiar laboratory curiosity. They are associzted
with tute burners, but analogs can be created with different geometries:
Markstein (1964, p. 81 ) designed a slot burner on which he observed a
cellular flame behaving essentially like an unwrapped (linear) polyhedrel
*lame. In particular, the cells cculd be made to travel rapidly from one
end of the slot to the other, Jjust as the volyhedral flame can be made to
spin. Markstein's photographs of the flame showed that the traveling
corrugations are saw-toothed in shape (figure 6).

It is the propagation that distinguishes polyhedral flames from other
types of cellular instability, so that will be the focus of our discussion.
Since the left stability boundary is not associated in any obvious way with
croragating disturbances (unlike the right stability boundary), the challenge
is o uncover a mechanism for such behavior.

One 5% the difficulties with polyhedrel flames is that the undisturved

fiam2 is conicel, i.e. non-zlznur.

0llowing Suckmaster (1933), we shall
overcome this obstacle by adopting a nominally planar model. Consider the
zorsion A3 of the burner flame that is located near the rim (figure 7a).

The flams speed varies from a small value {perhaps zero) at A, to a value
comzarable to the adiabatic flame speed at B. This portion is modeled

ty 2 plane “lame with some intermediate speed and standoff distance (figure To

Por=irkations of the planar configuration are parmitted in the y-direction,

o the page and parallel to the rim. Corrugations

x
3
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In tha context of the weakly nonlirear theory, verturbations are
governad oy equation (10), provided a term is added to account for the
presence of the rim. The rim is a heat sink that enchors the flame in e

imple fashion: an increase (decrease) in the standoff distance reduces

m

{incresses) the heat loss to the rim, thereby increasing {decreasing)
the flame sp=ed, a restorative rechenism. If F 1is now the perturbation
’

of the stanfoff distance, this effect can be represented by tha modification

W, = 4F _ ~(1+2)F ®
5 - (1+2) w e (38)

. . . ‘p s 2
of tne equation (6). Here q 1is a positive constant of order &°, and
the factor -(1+2) has been restored (since the parameter e, which was ;

earlier eguatad to it, will be given a different definition). From the

LF - (1+#2)F__ +qF =0,
+ (1+2) vyt (39)

2 result idsntical to the curvature equation (23) when the scaling (9) is
- -1
undone and R replaced by q.
Tha iinsarized form of this equation was considered in section 2, but

tarpret the anslysis differently. Rather than fix £ and

: - . - . -1
determining the rangs of unstable wavenumbers for each g (there R ),

ne the range of unstable wavenurbers for each

)4
Ke)
[
4]
o
[N
[§1]
ot
o
2]
1
H-

1. Thus, with T rproportional to exp(at+iky), the stability boundary

x =2 is ss2en %o be tra curve

u + (14T)k%4q = 0 (40)

ot 211 waluss of k  are admissible, however, because an integer

wuamdar 27 wevelangths must fit around the burner rim. The length L of

W . —— v
I N K
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trhe circunference provides the definition of the small parameter €, namely
2,.2
L="/L%, (k1)

and then the restriction is

k=X, with kg = e , N =1,2,3,... (42)

Tne positions of the corresponding points on the neutrzl curve depend on

. . o 2 .
the value of 3 in drawing Tigure 2 we tcok q = 117¢”. The correspording

then lie in the order 3 h’ 5,21,»,,1,,... . For lerger

e

values of

values of q there are more points on the lower branch of the curve: in

L 2
general, for q > iM'e” there are M.

Trose points for which the (reducad) Zewis number of the mixture is

less thaa £ correspond to unstable mocdes. Thus, each IN determines =

ifurcaticn corresvonding to a stationary N-siced polyhedral

ot
¥
o
[
[ ad
o

filame. Such unirmodal tifurcations are essentially the same as those considered

Zar in thne context ol Tlame curvaturs

P

the mixture

Zoth 1 and g can T2 varisi in en experiment Ty changing &
strensth and flow rate. We nave seen that changes in q will move the
zoints corresponding to k.. zlong the neutral curve, 2ltering the stability

cnaracteristics of the flame, Changes in 2 will do s0 too. For certain )

QM = QN for some

3.
'Y
0
;n
,,.
Q
43
o3

]
m
33
[¢]
=
O
7]

]
1]
e ]

2]
[0}
-
[
[(]

croices of q, two Gl

M. ha solution on such z merced branch corresvonds to a svinning

Talyvhedral flame, providsa M = 20,
s2, Trcm a mathematical voint of view, is

, Tor then the merged branch is the rightmost

[}
h}
vs
A

1
)~
-
-~
[

.
[{]
.

W
1]

’__l

O\

(4}

one z2nd rrosumavil Is z2cessicle as the Tirst manifestation of instability.
rnedra 4o not fit comfortztly on a circle, so

11y satisfying cnoice. The obji2ction does not apcly

- - . - . = ) MM KRS
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to the choice M =6, ¥ =3 (i.e. q = 129652), but then the two branches
origineting at E; and Es lie to the right of the merged branch, and
our elsreniary analysis can provids no evidesnce that the latter is
accessible. 3uckmestaer doss not resdlve this difficulty but, instead,

i argues that the favoradble comparison of the merged-branch solution with
the physical flexre is good evidence of accessibility.

7o ensure that X, and k,, give the same ¢, we nust take

4 2

q = 163 £°, (%3)

and then

1, = by = ~1-201%. (k)

7o determina the solution on the mergad braach, we perturb g9 and 2
- iy ~ 3 i 5 22 p s 2 :
away from the velues (43,Lk) ny 0{87), where & is 2 small perturdation
i varameter. At the same time we write
;
F=81, T =1/¢ (Ls)

z=d expand 7 in a power series in §. The leadirg term is found to

e Bt )e . (46)

pe
!
; 1
t
e
i
&
H-
=
N
I3
'0
]
e
N
3
<

N 2= : 1
3‘;/3‘; = -2.’.7.n3, 33/3\3 = ék:‘“" (L’T)

€ <0 t2 =0 secular term in the perturbation of £. Partial

iariatires 2re 2s23 Tecause A and 3 also depencd on the. slow time

0

2n 2 This scale determines the ultimate amplitudas of th

‘ srinning flzm2, Ttut we shall not pursue the matier here,
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Tauations (L7) have solutions corresponding to

<

ro=41/3 sin(wf—,wﬂgiy)-cos 2(mE+¢tkHy)] with o = k?,.A.O; (L8)

-

here AO and % are real and constant on the t-scale. These are waves

traveling in the negative/positive y-direction with an amplitude-dependent

Dhase speed kvAo. The shape of the wave resemvles the sawtooth rrofile in
i ’

figure 6, and Buckmaster has argued that the propagation speed is consistent

with the rapid rotations seen in experirents.

5. Other Cellular Flames.

by

So Tar we have been concerned with the evolution of the linear

|~

instavilities associated with values of & slightly less than -1.
Various additional effects were incorporated into the basic nonlinear

tzecry, and others could hzve been (Sivashinsky 1983). Our final remarks

!

are concarnad with values of g slightly greater than -1, where the
line=r stability of the flame can be destroyed by hydrodynamic efTects.

“re w2axly nonlinear description is now

w
Iy

Compzrison witn ejuation (15) reveals that the sign of nn hés been changed,

czuse now the definition
e =1+2 (50)

15 n228ei to obtzin 2 positive parameter; n and t still have the
ia7irizizns (9b,c,. Without the integral term, F-> 0 as T -+ = yhat-
nz initial 20nditions are, corresnonding to linear stability; as
‘namic effects (represented by the integral) are
i2g*znlilizing, Vicrnelson and Sivashinsky's computations show that a

Lrotrazsice wava, consisting of statiorary ceils, eventually forms

= - M - S — p—
e e MR IET s
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trovided the flame is not too large. For large f{lames, the chaotic
celluler structure first found in section 1 reasserts itself.

in the limit vy + 0, i.e. for significantly larzer departures of £

. . . c o : 2
from -1 than of ¢ from 1. Evolution is then on the scales yn, v 1t
rather than n,t, so that the fourth derivative drops out. If a
progressive wave is sought by setting FT = -V, and an is neglected
(a valid step where the curvature is not large), the result is

(n)

2 = 1, — -
12 4 v§ (- - 2)F (Man =0 with V= y}" dn, (51)
-® n-n n

a nonlinezar integral equation for the slore Fn.

2]

Tre rough solution found by Sivashinsky was not very satisfactory
and so McConmnaughey, Ludford & Sivashinsky (1982) recently integrated
in2 equ2tiorn more accurately. A continuous veriodic solution ig shown in
Tigure 9; the solution for any other period can be obizined from it oy
scaling n  without changing V (there is no praferred wavelength in the
linsar theory). At the cusps, Fn has a logarithmic singularity, which
maxXe3 the stiructure of “he combustion field quite diffsrent from that of
z Sunsen flame near its tip, for example. (Of course the singularity will

nelson and Sivashinsky's

CT zarticulzr interest is the value

l.hY2

cttained b lYelonnausghey, Ludford, and Sivashinsky. For an expansion
»z2tio ¢f ¢ = I, this leads to a flarme speed that is 1.6 times the plen

.

z2id~patic r2lue, 2 result in surprisingly good agreement with measured
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ange between 1.5 and 2). The theory, which essumes g -1
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Figure Captions

Chrysler emblem.
Five-sided polyhedral flame.

Numerical calculation of cellular flames.
(Courtesy G.I. Sivashinsky.)
Flame in a standard flammability tube.

. 2 -2yt .. .
Curve in ke s Y-plane determining sign of right
side of equation (36).

Analog of spinning polyhedral flame for slot burner.

(a) Behavior of tube flame near rim of burner.
(b) Plane model of (a) used to describe polyhedral flames.

Linear stability regions for polyhedral flames, with
admissible values of k .

Stationary wrinkling of an otherwise stable plane flame
due to hydrodynamic disturbances; possible outcome of
Darrieus-Landau instability.
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